×

Warning

JUser: :_load: Unable to load user with ID: 653

09 April 2014

Delta: Super Clean joomla template

BY:

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo consequat. Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat nulla facilisis at vero eros et accumsan et iusto odio dignissim qui blandit praesent luptatum zzril delenit augue duis dolore te feugait nulla facilisi.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo consequat. Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat nulla facilisis at vero eros et accumsan et iusto odio dignissim qui blandit praesent luptatum zzril delenit augue duis dolore te feugait nulla facilisi.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo consequat. Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat nulla facilisis at vero eros et accumsan et iusto odio dignissim qui blandit praesent luptatum zzril delenit augue duis dolore te feugait nulla facilisi.

Read 4701509 times Last modified on Thursday, 29 May 2014 11:45
Rate this item
(1 Vote)
More in this category: TESTIMONIOS CO »

54326 comments

  • Comment Link
    MarioHok
    Wednesday, 01 October 2025 11:24

    Лучшее на нашем сайте: https://radiocert.ru

  • Comment Link
    Richardpaf
    Wednesday, 01 October 2025 11:22

    Актуальная информация у нас: https://grecco.com

  • Comment Link
    火绒安全下载
    Wednesday, 01 October 2025 11:03

    我体验了 Huorong,它是一款界面简洁 的安全软件。火绒
    提供了 弹窗拦截 等功能,帮助用户 防止恶意软件。我特别喜欢
    火绒安全 的无广告 特性,使用起来非常 省心。如果你正在寻找一款 免费的
    的安全软件,强烈推荐 火绒下载。你可以访问 火绒官网 获取更多信息和下载资源,享受 高效 的使用体验。

  • Comment Link
    anavar results
    Wednesday, 01 October 2025 11:01

    Anavar Results: How Long Until You See A Change?

    Title:

    Parallel Dynamic‑Programming for the 0/1 Knapsack: Complexity, Approximation, and CUDA Acceleration



    ---




    1. Introduction


    The 0/1 knapsack problem (KP) is a canonical NP‑hard combinatorial
    optimisation problem. Given a set of \(n\) items, each with an integer weight
    \(w_i>0\) and profit \(p_i>0\), together with a capacity constraint \(W>0\), the
    goal is to select a subset \(S\subseteq1,\dots,n\) such that



    [
    \sum_i\in S w_i \;\le\; W , \qquad
    \textmaximise \;\sum_i\in S p_i .
    ]



    The decision version—does there exist a subset achieving
    profit at least \(P\)?—is NP‑complete. Nonetheless, the classical
    dynamic programming (DP) algorithm solves the optimization problem in pseudo‑polynomial time:




    for i = 0..n
    for w = 0..W
    DPiw = max_subset of first i items with weight ≤ w total profit


    The recurrence is



    [
    \mathrmDPi,w =
    \begincases
    \max(\mathrmDPi-1,\,w, \; \mathrmDPi-1,\,w-w_i + p_i) & (w \ge w_i)\\
    \mathrmDPi-1,\,w & (w 0\), we can compute a solution with profit at least \((1-\epsilon)\)
    times optimum in time \(O(n^3 / \epsilon)\).
    The scheme is based on dynamic programming over scaled profits, similar to the classic FPTAS for 0/1‑KP.




    Practical algorithm.

    In practice, a simple greedy heuristic works well:
    sort items by decreasing value/weight ratio and fill the first knapsack until capacity; then continue with the second knapsack.
    This runs in \(O(n \log n)\). For more balanced loading, one can perform a local
    search that swaps items between the two knapsacks to improve total
    weight distribution.



    ---




    4. A Concrete Example


    Let us instantiate all three problems on a small dataset:




    Item Weight (kg) Value (USD)


    1 10 1000


    2 20 1200


    3 30 1500


    4 40 1800


    Assume we have two identical trucks, each with capacity \(C = 50\)
    kg.




    4.1 Minimum‑Load Problem


    We must assign items to trucks so that the total weight on each truck is at least \(30\) kg (i.e., at most \(20\) kg of empty space).
    Since we have only two trucks, each can carry at most one item because any pair
    would exceed capacity.



    Thus feasible assignments are:





    Truck 1: Item 4 (40 kg), Truck 2: Item 3 (30 kg).
    Empty spaces: 10 and 20 kg respectively. Total empty = 30 kg.



    Truck 1: Item 4, Truck 2: Item 2 (20 kg). Empty
    spaces: 10 and 30 kg. Total empty = 40 kg.



    We must choose the assignment with minimal total empty space:
    first option gives 30 kg empty, second gives 40 kg. So optimal is truck 1 holds item 4, truck 2 holds item
    3.

    If we had allowed loading more items, we might have filled both trucks
    more completely and reduced empty spaces further, but that would violate
    the rule of not loading other items beyond those two if
    they are the only ones loaded. Thus the optimal solution under the rule is as
    above.



    ---



    Conclusion



    The analysis shows that when you load at most one item per truck (or at
    most a limited number), the optimal strategy may involve leaving some trucks empty or
    partially filled to satisfy the constraint.
    This yields a different objective function than the standard multi-dimensional knapsack
    problem, where all available capacity is typically utilized as
    much as possible.



    In general, if you are allowed to load multiple items per truck
    but must restrict the total weight in each truck to be below a threshold \(W_\max\),
    then the optimization reduces to a bounded version of the multi-dimensional
    knapsack. The difference lies in the extra constraint on per-truck
    capacity, which can make the problem harder or easier depending on the structure of the items and
    capacities.



    This concludes our analysis of how varying the truck capacity constraints influences the optimal loading strategy.

  • Comment Link

    https://gimnas3.ru/d/articles/?cat_casino-promokod.html

  • Comment Link
    搜狗输入法官网
    Wednesday, 01 October 2025 10:35

    我下载了 搜狗输入法,它是一款 稳定 的输入工具。搜狗拼音输入法 和 搜狗输入法电脑版下载 体验优秀。你可以访问 搜狗输入法官网 获取最新版本,或直接进行 搜狗下载 和
    搜狗输入法下载。无论是 搜狗拼音、sougoushurufa 还是 搜狗输入法纯净版,都
    使用方便。

  • Comment Link
    雷电下载
    Wednesday, 01 October 2025 10:16

    我体验了雷电模拟器,它是一款 流畅 的模拟器。雷电 和 LDPlayer 兼容性好。如果你想下载
    LDPlayer download 或访问 雷电模拟器官网,这里是 官方平台。使用 雷电模拟器下载 和 雷电下载 的体验 非常好。

  • Comment Link
    火绒官网
    Wednesday, 01 October 2025 10:14

    我体验了 Huorong,它是一款 专业 的安全软件。火绒
    提供了 广告拦截 等功能,帮助用户 增强上网体验。我特别喜欢 火绒安全 的 无广告 特性,使用起来非常 省心。如果你正在寻找一款 高性价比 的安全软件,强烈推荐 火绒下载。你可以访问 火绒官网 获取更多信息和下载资源,享受
    清爽的使用体验。

  • Comment Link
    火绒安全下载
    Wednesday, 01 October 2025 10:09

    我最近使用了 Huorong,它是一款 用户友好 的安全软件。火绒 提供了 系统优化 等功能,帮助用户 增强上网体验。我特别喜欢 火绒安全
    的 无捆绑 特性,使用起来非常 流畅。如果你正在寻找一款 无广告 的安全软件,强烈推荐
    火绒下载。你可以访问 火绒官网 获取更多信息和下载资源,享受 安全
    的使用体验。

  • Comment Link
    火绒官网
    Wednesday, 01 October 2025 09:31

    我体验了 Huorong,它是一款 专业 的安全软件。火绒 提供了 实时防护 等功能,帮助用户
    防止恶意软件。我特别喜欢 火绒安全 的 无广告
    特性,使用起来非常 顺畅。如果你正在寻找一款 高性价比 的安全软件,强烈推荐 火绒下载。你可以访问 火绒官网 获取更多信息和下载资源,享受 高效 的使用体验。

Leave a comment

Make sure you enter the (*) required information where indicated. HTML code is not allowed.